NOTATION

T'x, Zx, Cylindrical coordinates; vx, wy, radial and transverse velocity components; 2h, distance between
disks; jx, jix, rates of sublimation of lower (z=—1) and upper (z=1) disks; Px, pressure; py, density; u,,
dynamic viscosity; wik(i=1, 2), terms of outer asymptotic expansions (9); ci(i=1, 2), coeff1c1ents of (11); Wy,
terms of inner asymptotic expansion (8); z', dimensionless coordinate of inflow plane; Zk , terms of expansion
(10}; R=—jihufu.; Ri=—jidifite;  p=jdis; v=tandfe W=w. /i r=rih,; z2=2/h P=P. /].‘
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RHEOLOGICAL PROPERTIES OF HOMOGENEOUS FINELY
DISPERSED SUSPENSIONS. STEADY FLOWS.

Yu. A. Buevich and I. N. Shchelchkova UDC 532.529.5:532.135

Expressions are obtained for the rheological parameters (effective viscosity, force of inter-
phase interaction, etc.) of a moderately concentrated suspension of spherical particles. The
equations of motion of the suspension and of its phases are written.

A situation when the characteristic spatial scale of the average motion of a dispersed medium is far
greater than its internal structural scale, so that it is natural to use the methods of the mechanics of con-
tinuous media to describe such motion, is very common in applications. Two fundamental problems arise in
this case: to obtain the conservation equations describing the average flow of the phases of the medium and to
formulate the rheological equations closing them. In connection with the wide prevalence of dispersed media
in various fields of practical activity, boththese problems have been discussed in a very large number of
reports using the most varied theoretical and experimental methods for media of the most varied types.

For systems consisting of a continuous phase and discrete elements of a dispersed phase distributed in
it, the first problem was formally solved in [1, 2] using the well-developed method of averaging of the local con-
servation equations, which are valid within the materials of the phases, over the ensemble of possible configura -
tions of particles of the dispersed phase. (Bibliographies of research in this field are also presented in the
cited reports.) The basic method of solving the second main problem was also indicated in [1, 2], but it was
studied concretely only for steady streams of a monodispersed medium containing fine spherical particles in
the case when their volume concentration is not too high, so that in averaging over the ensemble one can
neglect the nonoverlapping of the solid spheres in the first approximation. In this case the suspension was
analyzed as a macroscopic homogeneous "one-velocity™ medium.* Analogous problems for the process of
heat or mass exchange in a granular medium were considered in [3].

*The results of [1, 2] are presented in Russian in the following preprints: Yu. A. Buevich and I. N. Shchel--
chkova, "Continuous mechanics of monodispersed suspensions. Conservation equations,™ and Yu. A. Buevich,
B. S. Endler, and I. N. Shchelchkova, "Continuous mechanics of monodispersed suspensions. Rheological equa-
tions of state," Preprint Nos. 72 and 85, Inst. Prikl. Mekh. Akad. Nauk SSSR, Moscow (1976} and (1977).
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Below we also study a moderately concentrated suspension, which we assume to be macroscopically
homogeneous in the sense that the spatial scale of the quantities determining the volume concentration and the
granulometric composition of the dispersed phase is considerably larger than the scale of the average veloci-
ties of the phases and of the other dynamic variables. However, we use a two-velocity approximation: The
difference between the velocities of the phases is constructed, and not only the equations of motion of the sus~
pension as a whole but also of its phases separately are studied in explicit form. The particles are assumed
to be spherical, with the Reynolds number for any sphere being assumed to be small. The latter allows one
not only to neglect inertial effects in an analysis of the relative motion of the phases but also to ignore the
terms due to random pulsations of the phases which appear in the equations of motion in [1, 2] and the possi-
bility of transformation of the kinetic energy of particle rotation into the energy of translational motion. In
this case these equations are separated as follows: in a study of the average motion of a suspension there is
no need to consider the equations of conservation of the average moment of impulse of its phases. External
mass forces with a potential & act on the system, but external pairs of forces are assumed to be absent.

First let us consider a monodispersed suspension. Under the adopted assumptions the steady equations
of conservation of momentum and mass of the suspension as a whole and of its dispersed phase are written in
the laboratory coordinate system r in the following form [1, 2]:

dye (€qV) € + dip () ¢ = yo —dy®, yc =0,

(1)
dip () ¢ = T —diov®, ye, = 0.
Here we introduce the average density and velocity of the suspension
d = edy+ pd), ¢ = ec,+ pey, 2)

while o and f represent the effective tensor of the average stresses and the average force of the interphase
interaction per unit volume of the suspension, which are formally expressed in the form
6 = —epl -+ 25e 4 po,,
3)

I

6, = 433 jx*(n)l)dx, f=n j (nX)dx,
na

where 3 is the tensor of the average stresses acting on the surface x=q of a single (test) particle of the sus-
pension (the origin of the convective coordinate system x is taken at the center of this particle) while e is the
tensor of the average deformation velocities in the suspension stream. The equations of conservation of mass
and momentum of the continuous phase consist of the differences of the corresponding equations in (1) for the
suspension as a whole and for its dispersed phase.

For the determination of the tensor 3 there is the special problem of the flow over the test particle of a
two-phase dispersed medium whose properties at a distance from the particle surface coincide with the proper-
ties of the suspension but are not homogeneous in the layer adjacent to this surface. For moderately concen-
trated suspensions the existence of this layer can be neglected entirely, which corresponds to neglecting the
effect of nonoverlapping of the particles in the determination of the ensemble of their configurations [1, 2]. In
order to formulate this problem, we write the equations of motion (1) in the convective coordinate system

vw=0, v6 —dy (@ + ¥) =0, ¥=x{(c,vy) ey}

x=0"?

. 4
v, =0, I—dpy (@ +V¥) =0,
where the term containing (¢;V)e, reflects the appearance of an inertial force in this coordinate system and is
calculated for the point x=0 connected with the center of the test particle. In writing (4) we neglected the
inertial effects connected with the relative motion of the phases.

In view of the linearity of Eqs. (4), one can take [1, 2]
o= —plL 2ue, f==Fk{v,~—v)+ kAv, 5 2y (D + V) (5)

Here pyand kj (i=1, 2, 3) are some unknown coefficients which are determined a posteriori from the condition
of self-consistency of the theory, namely, from the condition of agreement of Eqs. (5) with the equations which
follow from (3) after the solution of the test-particle problem and the calculation of the integrals in (3) on the
basis of this solution. We emphasize that here the shear stresses in the suspension are considered in the
approximation, usual for the mechanics of homogeneous fluid media, when one only allows for the contributions
to these stresses proportional to the first powers of the first-order derivatives of the velocity components with
respect to the coordinates [4]. Therefore, the condition of agreement of the stresses from (3) and (5) is under-
stood to be only with the accuracy of terms of just such a type, while the condition of agreement of the expres-
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sions for the force is with the accuracy of terms linear with respect to the second-order derivatives [actually,
it is clear from Egs. (4) that the orders of magnitude of the components of the vectors f and Vg are the same].

From (4) and (5) and the boundary conditions of attachment at the surface of the test particle we have the

following problem on the flow over it:
VWi =0, —yp*+pAV—dy (@ - ¥) =0, vi=0XX, x =q;
(6)
Vi, p* vy, p, x— 0.

At an infinite distance from the particle the perturbed velocity v§ and the perturbed pressure p* of the con-
tinuous phase must change into the corresponding unperturbed quantities vy and p (here "infinity" is understood
in the sense of the method of joined asymptotic expansions). The solution ofthe problem (6) iseasily expressed,
with arbitrary vy and p satisfying Eqs. (4), in the form of series with respect to basis functions built on
spherical harmonics (see {5, 6], for example); here we use the solution in the form obtained in [7], where some
important integrals over the surface of the test particle were also calculated.

Using the results of [7] and defining ¥ in accordance with the equation for g in (5), for the quantity in (3)
we have
00, = p (— pl -+ Bue, - 1/2 poAey), (7
where the last term in the definition of ¢ should be discarded so as not to assume an excess accuracy (see the
comment above). Similarly, after integration [7] we have from (3)

9 -3 .
i=— P vy —v) 2 ppAv, - pdy (@ + F), ®)
2 @ 4
which leads [after comparison with (5)] to the equalities
90 =38 -
kl-—~—2— ;Z—, kz——z oW, k34pd (9)

Further, from the equation of conservation of momentum of the dispersed phase in (4), with allowance for
the expressions for the force in (8) and (9), we have

2 d | . .
V1:Vo+% a?Av, - % E‘Q——l)‘ v(@+ ¥), (10)
" ;

from which, with the accuracy of higher derivatives of the velocity, we have
e == ce, + pe; = €, == e, Av = Av, = Av, (11)

[the order of magnitude of the terms arising in the differentiation of (10) is easily estimated using Eqgs. (4)].

Allowing for (7) and (11), and comparing the expressions for ¢ in (3) and (5), we obtain the equation for
the effective viscosity of the suspension

/ ~1
Hiﬂo(l—‘“P) : (12)

As would be expected, this quantity coincides with that determined on the basis of a one-velocity model in [1, 2],
as well as in [8]. Equation (12) was obtained earlier in [9] by another method.

Equations (5), (9), and (12) close the system of equations (1) or (4) for macroscopically homogeneous sus-
pensions of identical fine spheres. In accordance with (11) the tensor of the deformation velocities of the sus-
pension can be identified with those for the continuous or dispersed phases [so that e; and Avy in (5) can be
replaced by e and Av], the relative velocity vy — vy in the convective coordinate system obviously coincides
with the velocity ¢y — ¢, in the laboratory system, while the spatial derivatives of the velocities are the same
in the two coordinate systems.

A comparison of Eq. (12) with the experimental data of [10-12] is illustrated in Fig. 1. The tests of [10,
11} were chosen for comparison because they are usually used to test the majority of proposed equations,
empirical and others, while the tests of [12] were chosen in view of the very pure conditions under which they
were conducted. Only the experimental results of [12] for suspensions of polymethyl methacrylate particles in
aqueous solutions of glycerin, obtained on a rotary viscosimeter, are shown in Fig. 1. Both the stability of the
suspension (particle aggregates were not formed) and the absence of structure formation (characteristic of
flows in a capillary viscosimeter, for example) were guaranteed in these experiments. It is seen that the
theory, developed for moderately concentrated suspensions, leads to fully satisfactory results up to a volume
concentration of particles equal to 20-25%. Curves corresponding to the well-known Einstein equation and the
equation of [13] are also presented in Fig. 1.
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Fig. 1. Dependence of relative viscosity of a suspension on its
volume concentration; solid curve) Eq. (12); dashed curves)equa-
tions of Einstein (1) and of Batchelor and Green {13] (2); a) data of
[10]; b) of {11]; c¢) of [12].

Fig. 2. Dependence of relative velocity of sedimentation on volume
concentration of suspension: solid curve) Eq. (14); dashed curve)
Batchelor's equation [16]; 1) experimental data of [14]; 2) of [15].

Now let us consider the effects connected with the relative motion of the phases, and consequently with
their interaction. The theoretical description of such effects will obviously depend essentially on whether one
uses the simple one-velocity model for this (as in [1, 2, 8], where the flow over the test particle of a homoge-
neous medium modeling the suspension as a whole was analyzed) or the realistic two-velocity model (as above).

First of all, the force of the interphase interaction in (8) differs from that calculated in [1, 2, 8] in the
respect that the average velocity v, (or ¢g) of the continuous phase figures in (8) in place of the velocity v (or c)
of the suspension. This is entirely unimportant in a description of the motion of the suspension as a whole, but
very important in an analysis of phenomena such as the settling of suspensions in channels, holding tanks, etc.
In fact, let us calculate the particle sedimentation rate u=cy, for example, in a gravitational field (V¢ =—g) with
the condition that the suspension as a whole is stationary, i.e., ¢=0. Inthiscase, from (2) we have cy=—(p/c)u,
and the equation of conservation of momentum of the dispersed phase from (1) gives

oM o—de (13)
2 a* &
From this and from the definitions of d in (2) and u in (12) we obtain
u:(l,_._p)E(l___s_p‘) u,, uo;;,:z M, (14)
2 9 Uy

where ug is the Stokes velocity of settling of a particle in the purely continuous phase, the density and viscosity
of which are dy and yp, respectively.

In Fig. 2 Eq. (14) is compared with the experiments in [14, 15]. The curve which follows from [16] is also
shown here. It is seen that the agreement between theory and experiment is good enough up to values of p equal
to 0.20-0.25.

Let us indicate the meaning of the individual terms in (8). The first term describes the force of the
viscous action of the surrounding medium on the particle per unit volume of suspension; in this case the effec-
tive viscosity p of the suspension plays the role of the viscosity of the medium, while the true velocity of inter-
phase slippage vy, — vy (or ¢y~ ¢;) plays the role of the relative velocity. The second term represents the
effective Faxén force, also determined with the help of the viscosity p. Finally, the third term in (8) describes
the effective buoyant force (the Archimedes force), due both to the external mass force field and to the inertial
force field; in this case the average density d of the suspension figures as the density of the external medium.

We note that the discussion of how to correctly write the individual terms in the expression for the force
of the interphase interaction, particularly those connected with the pressure gradient in an unperturbed stream,
continues at present (see [17], for example), with a distinction being made between the components of this
gradient produced by hydrostatic and hydrodynamic causes. Equation (8) makes it possible to finish this dis-
cussion in application to steady streams containing fine particles.
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We can show that there are a number of problems in which the correct allowance for the components of
the interaction force proves important not only in a quantitative but even in a qualitative respect. For example,
it is shown in [18] that the introduction of a term of the form ~ pVp into this force seriously alters the pattern
of inertial settling of particles of a suspension onto a body over which it flows in comparison with the pattern
predicted in the case when such a term is ignored. In fact, a term proportional to Av, figures in (8) in place
of the term containing Vp, and while the former quantity can be expressed through other dynamic variables
using the equations of motion, its final expression still differs from that postulated in [18].

Up to now we have considered the equations of conservation of mass and momentum, Inh a number of
cases it is also important to study the effect of the components of the effective stress tensor, which depend on
the angular velocities of rotation of the particles, as well as the equations of conservation of the moment of
impulse of the phases. Formal representations for these component stresses and equations are presented in
[1, 2]. The latter include two quantities which are also expressed through integrals over the surface of the
test particle of the stresses acting on it: the average moment of the interphase interaction and the pseudo-
tensor of the average "moment" stresses. From the solution of the problem (8), after calculations, we obtain

m::rtS‘xx(nE)dx:Sppt (—‘l)- rotvo——m\, (15)
4 /
as well as
 w=n S X % |X X (nZ)] dx L % a%ef = 2pa%ny - —; a’ef. (16)

Here € is the antisymmetric alternating Levi~Civita tensor while y is the pseudotensor of the "deformation
velocities," constructed from the field of the pseudovector rot vy. It is obvious that with the adopted accuracy
rot vyp=rot v=rot ¢;=rot c.

Monodispersed suspensions have been discussed above. Now let us generalize the results obtained to a
polydispersed suspension with a size distribution function ¢(a) of the particles such that

n= S 9 (a) da, p= % nS a*¢ (a) da. amn

It is easy to see that such a generalization is trivial for the moderately concentrated suspensions under con-
sideration. In fact, the polydispersion of the particles affects the rheological characteristics of the medium
only to the extent to which it affects the properties of the fictitious dispersed medium flowing over the test
particle in the surface layer concentric with the particle [1, 2]. But in the neglect of the nonoverlapping of the
particles the existence of such a layer was neglected altogether. Therefore, the results obtained above will
also be valid for a particle of any radius in a polydispersed suspension. It is clear, in particular, that in the
approximation under consideration the effective viscosity of the suspension does not depend at all onthe form

of the function ¢(g) and is determined by Eq. (12) as before. The force acting on the ¢(g)da particles which are
in a unit volume of the suspension and have radii in the interval (a, g + da) on the part of the surrounding medium
has the form (we use the laboratory coordinate system)

df =F(a) p(a)da [Gnau (co— ¢, (@) + ma®pAc, - % aaddy (@ + ¥ (@) } ¢ (a)da. (18)

The velocity ¢;(e) of the particles of radius a is determined from the equations of conservation of mass
and momentum for such particles, which are fully analogous to the equations in (1)

VO @ =0 = W@ Ve @ =F@— 1 iy, 19)

In this case the equations of conservation of mass and momentum for the suspension as a whole have the
form [we use the representation for ¢ from (5)]

Ve, = 0, dge (Cov) & +- % ey 5 (¢, (@) V) ¢, (@) ¢ (@) da = — yp + pAv, — dy®. (20)

The system of equations (19) and (20) serves for the determination of the unknowns ¢, ¢(a), and p [in 2
stream of macroscopically homogeneous suspension the equations of conservation of mass in (19) and (20) are
a consequence of one another]. The equations of conservation of mass and momentum for the continuous phase
are obtained after the subtraction from (20) of the corresponding equations of (19), integrated over dg with a
weight ¢(a).
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By an entirely analogous means it is easy to obtain expressions for the moment acting on particles of a
given radius per unit volume on the part of the surrounding medium and for the effective pseudotensor of the
moment stresses figuring in the equations of conservation of the moment of impulse [1, 2], which replace (15)
and (16) in the case of a polydispersed suspension.

In conclusion, we note that it is also easy to write the expressions for the various characteristics of a
suspension which is polydispersed not only by the size but also by the density of the particles contained in it.

NOTATION

a, particle radius; ¢, velocity in the laboratory coordinate system r; d, density; e, tensor of deformation
velocities; f, F(a), force of interphase interaction and density of its distribution with respect to q; g, accelera-
tion of gravity; ki, coefficients in (5) and (9); m, moment of interphase interaction; n, numerical concentration
of particles; n, unit vector of outer normal at surface of test particle; p, pressure; u, uy, velocity of sedimen-
tation of the suspension and of a single particle, respectively; v, velocity in the convective coordinate system
x connected with the center of the test particle; y, pseudotensor of deformation velocities constructed with
respect to rot vy; €=1— p; w, pseudotensor of moment stresses; pu, viscosity; p, volume concentration of
particles; g, £, stress tensors; &, potential of external mass forces; ¢{a), particle distribution function by
radii; ¥, potential of inertial forces, introduced in {4); &, angular velocity of particle rotation; the subscripts
zero and one pertain to the continuous and dispersed phases, respectively; an asterisk denotes the dyadic
multiplication of vectors; an asterisk above marks the fields perturbed by the test particle.
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